- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Gaiteri, Chris (2)
-
Atique, Muhammad Saad (1)
-
Connell, David R. (1)
-
Elsisy, Amr (1)
-
Iatrou, Artemis (1)
-
Kuzmin, Konstantin (1)
-
Mandviwalla, Aamir (1)
-
Ng, Bernard (1)
-
Sultan, Faraz A. (1)
-
Szymanski, Boleslaw K (1)
-
Szymanski, Boleslaw K. (1)
-
Tasaki, Shinya (1)
-
Zhang, Ada (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
Drozdz, Stanislaw (1)
-
Knuth, Kevin (1)
-
none (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
none (Ed.)Abstract Clustering molecular data into informative groups is a primary step in extracting robust conclusions from big data. However, due to foundational issues in how they are defined and detected, such clusters are not always reliable, leading to unstable conclusions. We compare popular clustering algorithms across thousands of synthetic and real biological datasets, including a new consensus clustering algorithm—SpeakEasy2: Champagne. These tests identify trends in performance, show no single method is universally optimal, and allow us to examine factors behind variation in performance. Multiple metrics indicate SpeakEasy2 generally provides robust, scalable, and informative clusters for a range of applications.more » « less
-
Mandviwalla, Aamir; Elsisy, Amr; Atique, Muhammad Saad; Kuzmin, Konstantin; Gaiteri, Chris; Szymanski, Boleslaw K (, Entropy)Knuth, Kevin; Drozdz, Stanislaw (Ed.)Mapping network nodes and edges to communities and network functions is crucial to gaining a higher level of understanding of the network structure and functions. Such mappings are particularly challenging to design for covert social networks, which intentionally hide their structure and functions to protect important members from attacks or arrests. Here, we focus on correctly inferring the structures and functions of such networks, but our methodology can be broadly applied. Without the ground truth, knowledge about the allocation of nodes to communities and network functions, no single network based on the noisy data can represent all plausible communities and functions of the true underlying network. To address this limitation, we apply a generative model that randomly distorts the original network based on the noisy data, generating a pool of statistically equivalent networks. Each unique generated network is recorded, while each duplicate of the already recorded network just increases the repetition count of that network. We treat each such network as a variant of the ground truth with the probability of arising in the real world approximated by the ratio of the count of this network’s duplicates plus one to the total number of all generated networks. Communities of variants with frequently occurring duplicates contain persistent patterns shared by their structures. Using Shannon entropy, we can find a variant that minimizes the uncertainty for operations planned on the network. Repeatedly generating new pools of networks from the best network of the previous step for several steps lowers the entropy of the best new variant. If the entropy is too high, the network operators can identify nodes, the monitoring of which can achieve the most significant reduction in entropy. Finally, we also present a heuristic for constructing a new variant, which is not randomly generated but has the lowest expected cost of operating on the distorted mappings of network nodes to communities and functions caused by noisy data.more » « less
An official website of the United States government
